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SUMMARY 

The Gauss-type quadrature methods with a logarithmic weight function can be extended to the evaluation of 
Cauchy-type integrals and to the solution of Cauchy-type integral equations by reduction of the latter to a 
linear system of algebraic equations. This system is obtained by applying the integral equation at properly 
selected collocation points. The poles of the integrand lying in the integration interval were treated as lying 
outside this interval. The efficiency of the method, both in evaluating integrals and solving integral equations, 
is exhibited by a numerical example. Finally, an application of the method to a crack problem of plane 
elasticity is made. 

1. Introduction 

The problems of  the evaluation of  the integral 

fo  ~ 1 ~0(t) l(x) = In dt, (1.1) 
t t - x  

and the solution o f  the integral equation 

f01 in 1 {K~( t , x )  } t t ~ x  +K2(t,x) ~(t)dt=f(x), (1.2) 

(the solution o f  a system of  integral equations of  this type being an obvious generalization), are 

solved in general by  employment of  n-point Gaussian quadrature formulae. The kernels K1 (t, x) 

and K2(t, x) are bounded in [0,1] with respect to both variables t and x, the unknown function 

~0(t) is supposed continuous in [0,1 ], and the right-hand side function f(x) is continuous in (0,1] 

with an appropriate logarithmic singularity at x = 0. The coefficients of  the appropriate ortho- 

gonal polynomials for the logarithmic weight function In(I/t) ,  as well as the abscissae and 

weights of  the corresponding Gaussian integration rule, are given by Berthod-Zaborowski [1 ] 

for n = 1(1)4 and in a much more complete form, appropriate for present-day computations, by 

Stroud and Secrest [2] for n = 1(1)16 and an accuracy of  30 significant digits. An alternative 

method for the evaluation of  these abscissae and weights was proposed by Danloy [3], who 
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considered the more general weight function w(t)= taln(1/t) (a > - 1 ) ,  the numerical results 
being given for a = 0. 

Furthermore, Kadlec [4] evaluated integrals with logarithmic singularities and of a more 
general form than the integral (1.1) for two density functions: ~0(t) = 1 and ~o(t) = exp(-7/t)  
(7 > 0). For the first of them he easily derived a closed-form formula by employing the prop- 
erties of the dilogarithm function D(x) given by Mitchell [5]. For the second density function 
he reduces the problem to the numerical evaluation of the integral 

Le(A, B, 3') = D(Ax + B)exp(-Tx)dx.  

A table of values of this integral, accurate to three decimal digits, is given at the end of his 
paper. 

On the other hand, Kuli6[6] has also attempted the evaluation of the integral (1.1) in the 
interval [-1,1 ] and for any density function, by employing Kantorovich' method of extracting 
the singularity. In the example given by Kuli6 the coincidence of the exact and approximate 
values does not exceed the third significant digit. 

Also, Hunter [7] and Chawla and Ramakrishnan [8] modified the Gauss-Legendre and the 
Gauss-Jacobi methods for the numerical evaluation of the integrals 

f l  cb(t)dt and f l  I ( 1 - t ) a ( l  +t)¢~b(t)dt, a , ~ 3 > - l ,  

respectively, to cope with the case where (P(t) has simple poles within the interval (-1,1). Such 
is the case of Cauchy-type integrals, in which 

~(t) 
¢ ( t )  = - - ,  

t--X 

where ¢(t) is continuous in [-1,1]. Furmermore, Theocaris and Ioakimidis have proved, either 
in [9, 10] following the technique of Hunter [7] and Chawla and Ramakrishnan [8], or in [11, 
12] employing the Plemelj formulae, that the treatment of simple poles within the integration 
interval may be the same as that of simple poles outside this interval, the latter problem having 
already been studied by Donaldson and Elliott [13]. Thus, the existing quadrature methods 
have become applicable to the case of Cauchy principal-value integrals. This generalization 
allows also the solution of systems of Cauchy-type singular integral equations if the roots x r of 
the functions qn(Z), given by Eq. (3.7) of [9] are selected as points of application of these 

equations. 
The present solution of the problems of evaluating the integral (1.1) or solving Eq. (1.2) 

is based on the above-mentioned method of Theocaris and Ioakimidis [9-12]. In Section 2 of 
this paper the orthogonal polynomials corresponding to the logarithmic weight function are 
given and the functions qn(Z) are found for the methods of Gauss, Radau and Lobatto. In 
Section 3 a numerical example, already treated by Kuli~ [6], is examined both from the point 
of view of the evaluation of the integral considered there and the solution of the corresponding 
integral equation. Finally, in Section 4, the method is applied to a plane-elasticity crack 
problem with a jump in the loading along the crack edges. The strength of the logarithmic 
singularity in the edge-dislocation density function along the crack at the point of the jump was 
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Cauchy-type integrals and in tegral equations 65 

determined by solving the corresponding Cauchy-type singular integral equation by the method 
proposed in this paper. The results obtained are seen to converge to their expected value in this 
simple application. 

1 lim 
Qo(x) = "~ e~o 

Hence 

2. The logarithmic weight function 

For w(t)= ln(1/t)l[0, 1], the orthogonal polynomials are given by the recurrence formula [2, 
p. 90]: 

Po(z) : 1, Pl (Z )=Z  - bl,  (2.1) 

P n ( Z ) = ( Z - b n ) P _ l ( z ) - e n P _ z ( Z ) ,  n>~2. 

In the same reference the coefficients b n and c n are given on pp. 90-91 and the roots of the 
above-mentioned polynomials, as well as the corresponding weights for the case of the Gauss 
rule in Table 9 (pp. 301-304) for n = 1(1)16. 

Thus, according to Eq. (3.7) of Ref. [9] and Eq. (2.1) above, the functions qn(Z) for the case 
under consideration, denoted for the system of polynomials Pn(z) by Qn(z), are given by 

1 ( l  1 Pn (t) 
Qn ( z ) = -  ~ . l o  In dt, 

t t - z  

and, because of the last of Eqs. (2.1), one obtains 

Qn(Z) = (z - bn)Qn _ 1 (z) -CnQ n -  2(z), n/> 2. (2.2) 

For n = 1, Eq. (2.2) takes the form 

Q,(z )  = (z - b l ) Q o ( z ) -  1/2. (2.3) 

Finally, in accordance with the definition of the principal value of a Cauchy-type integral, one 
obtains for the function Qo(z) in the interval (0,1): 

x - e__ ln t  dt + - - d t  , O < x < l .  
t - x  +e t - x  

1.11 1 X e~O 

0 < x < l ,  

where 

D ( z ) = -  f o  l n ( 1 - u )  du 
u 

(2.4) 
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denotes the dilogarithm function [5]. 
Now, since the power-series expansion of the dilogarithm function D(z)= ~ (zn/n 2) 

n----1 
converges absolutely and uniformly for I z l <  1, [5], the limit in Eq. (2.4) is equal to zero. 
Thus, Eq. (2.4) takes the simpler form: 

2 Q ° ( x ) = l n l x l i n  I l-'----~x I - D ( f - ~ ) x  +D(1),  

which holds also for the case where x < 0 or x > 1, [4, Eq. 11 ]. In this way, it has become pos- 
sible to express the function Qo (x), which is a Cauchy-type integral, interpreted in the principal- 
value sense for 0 < x < 1, through well-defined functions and not through another principal- 
value integral. Of course this fact is quite unusual. Next, by replacing D(1) and D((x - 1)/x) 
by their expressions given by Eqs. (2.3) and (5.4) of [5] respectively, we obtain 

7r 2 
-D(x)  - 1 in 2 Ix l + for x > 0, 

2 --3' 
2Qo(x) = 

1 ln2[xl___6__ ' f o r x < 0 .  - D ( x ) -  

It can also be seen that the function Q0(z) has, in the case of complex z, the expression 

(2.5a) 

1 ln2 (_z) 7r 2 (2.5b) 2Qo(z) = - D ( z ) -  -~ 6 

The recurrence relation (2.2), together with Eqs. (2.3) and (2.5), completely define the 
functions Qn(z) in the whole plane. These functions, together with the polynomials Pn(z), 
given by Eqs. (2.1), enable the application of the methods of Gauss, Radau and Lobatto: 
i) to the evaluation of Cauchy-type integrals with a logarithmic singularity, and 
ii) to the solution of Cauchy-type singular integral equations with a logarithmic singularity. 

Actually, the polynomials Pn(z) and the corresponding functions Qn(Z) are used only for 
the Gauss method. In the Radau method the appropriate polynomials are given by [9] 

On(Z ) =en(Z) + anP n -  l(Z), n />  1, 

where 

d - Pn(r) r = 0 or 1. 
n en  - 1 (7")' 

(2.6) 

Furthermore, in the Lobatto method the appropriate polynomials are given by [9]: 

On(Z ) =Pn(Z) + d n P  - l(z) + enPn_ :(z), n >12, 

where 

(2.7) 

d = -  { P ( 0 ) P  2 ( 1 ) - P ( 1 ) P _ 2 ( 0 )  ], /D, 

e n = ,{ Pn(0)Pn_ , ( 1 ) - P ( 1 ) P _  ,(0) ], /D, 

D = P _  1 ( 0 ) P _  2 ( 1 ) - P _  1 ( 1 ) P _  2(0). 
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It can be readily seen that the functions qn(Z), in the cases of the Radau and Lobatto methods, 

are also given by Eqs. (2.6) and (2.7) respectively, provided that Pn(z), Pn - 1 (z) and Pn - 2(z) 
are replaced by Qn(z), Qn - 1(z) and Qn - 2(z) respectively. Hence, the weights for either of the 
three above-mentioned methods of n-point quadrate rules are [9] 

A k =--2qn( tk) /o ' ( tk) ,  k = 1, 2, ..., n, (2.8) 

where On(Z ) and qn(Z) denote the functions corresponding to the method employed and t k are 

the roots of on(z ) . 
Thus, for any value of x, other than 0, 1 and t k (k= 1, 2 ..... n), the integral (1.1) can be 

evaluated from the well-known quadrature formula [9]: 

n m 

I (x )  =k~=~ Akcb(tk) -- 2 ~ Pkqn(Zk) + E n, (2.9) 
= k = l  On(Zk) 

where 

de( t ) -  ~0(t) 
t - x '  

ztc are the simple poles of ~(z) lying in the interior of a simple closed curve C surrounding the 
integration interval [0,1] and Pk are the residua of q~(t) at these poles. As regards the error 

term E n , it is given by [9]: 

En = - ~  f c  qn(7") cb(r)dr. 
• % ( r )  

Now, for 0 < x  < 1 one of the poles, namely t =x ,  lies within the integration interval and 

the corresponding term in the second sum of Eq. (2.9) must be taken into consideration unless 
x is a root of qn(Z). Furthermore, it should be noted that the influence of other poles lying in 
the vicinity of the integration interval may be significant and this is exhibited in the numerical 

example treated in Section 3. 
On the other hand, when Eq. (2.9) is employed for the solution of the integral equations, 

the roots of qn(Z) in the integration interval are selected as the points x r of its application, so 
that there remain in the second sum of its right-hand side only terms corresponding to poles 
outside the integration interval. Although these terms are ignored at present, their influence on 
the resulting values of ~0(tk) becomes considerable for those t k lying in the vicinity of such 

poles• 

3. A numerical example 

Kuli~ [6] has evaluated the integral 

J(x, a) = 1_ f l  In I tJ 
7r a - - 1  t 2 + t a n 2 a  

dt 
• , - 1  ~< x < 1, ( 3 . 1 )  

t - - X  
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as an application of his method developed in the same paper. The exact value of this integral for 
a = rr/4 is 

J(x, Tr/4)= ~2xG+Or2 /2 )  s i g n x - N ( x )  } / { rr(1 + x  2) } , (3.2) 

where G = 0.915965594177219015 is Catalan's constant and 

N(x)  = fo: In 1~1 + r drr - D(x) - D(-x) ,  (3.3) 

where D(x) is the dilogarithm function. 

This example is also treated here both as a problem of evaluating the integral (3.1) for 
a = 1r/4 and as one of solving the integral equation 

J(x, rr/4)= J(x, rr/4). 

To this end, the integration interval [-1,  1] must be transformed into [0, 1]: 

J(x, Tr/4) 1 f j  = -- In I t lK (t, x)~o(t)dt (3.4) 
/r 

where the kernel K(t, x) is given by 

K ( t , x ) = (  1 1 ) 1 
t - x  t + x  l + t  2 '  0~<x~<l '  (3.5) 

and 

~0(t) = 1. 

As regards the dilogarithm function D(x), it was computed by using the algorithm of 
Ginsberg and Zaborowski [14], valid along the whole real axis with an accuracy of about 16 

digits. 

3.1 Evaluation o f  the integral 

From Eq. (3.5) one can see that the poles to be considered in evaluating the integral (3.4) are 
t = x  (lying inside the integration interval) and t = - x  (lying outside this interval; the simple 
poles t =  +i, lying for any value of x, 0 ~<x ~< 1, far from the interval [0,1] will not be taken 
into account. The terms in the second sum in Eq. (2.9) corresponding to these poles are 

1 qn(X)  r ( - -x )  = - 1 q n ( - X )  ( 3 . 6 )  
r(x) = 1 + x ------5 " o (x) ' 1 + x - - - - ~  " On(-X) '  
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TABLE 1 

Comparison of the numerical results obtained for the integral J (x, ~r/4) by using the Gauss method (columns 
2 and 3} or the method of Kulid (column 5) with its exact values (column 4). 

Column 1 Column 2 Column 3 Column 4 Column 5 
X 

0.00001 -12.0195219613054 1.57079579165814 1.57079579165817 1.570796 
0.0001 -4.54365692615055 1.57079096129050 1.57079096129049 1.570791 
0.001 0.40547264089362 1.57074125801857 1.57074125801860 1.570740 
0 . 0 1  1.56102926022973 1.57010426598715 1.57010426598716 1.570092 
0.1 1.54987676743279 1.54987677116726 1.54987677116732 1.549752 
0.2 1.49954089473264 1.49954089473350 1.49954089473350 1.499282 
0.4 1.33153940641463 1.33153940641463 1.33153940641463 1.330916 
0.6 1.11836011939027 1.11836011939027 1.11836011939030 1.116911 
0.8 0.90170416255557 0.90170416255557 0.90170416255557 0.897479 
1.0 0.68425998572954 0.68425998572954 0.68425998572954 0.693580 

respectively. Now, if the integral is evaluated at the roots x r of  qn(Z), then r(Xr) = 0. For 

x 4= x r the correction term r(x) must be considered. On the other hand, the influence of  the 

pole t = - x  is rapidly diminishing as x moves away from 0, but it is significant when x is near 

0, because, in this case, the pole lies in the vicinity of  the integration interval. 

The values of  the integral J(x, 7r/4) were evaluated by using the Gauss method with n = 16 

abscissae for different values of  x, and they are given in column 2 of  Table 1 in the case where 

the term r ( - x )  has been ignored, and in column 3 of  the same Table in the case where this term 

has been taken into consideration. The much better approximate value o f  column 3 for small 

values o f x  exhibit the above-mentioned influence of  the pole t = -x .  The exact valiaesJ(x, 7r/4) 

of  J(x, rr/4) are given in column 4 of  Table 1 and the approximate values, calculated in ac- 

cordance with the method of  Kuli6 [6] and with n = 16 terms, in column 5. It may also be 

noted that analogous results have been obtained by using the Radau or Lobatto methods in- 

stead of  the Gauss method. Furthermore, no considerable improvement of  the numerical 

results has been observed when using the method of  Kuli6 for increased values of  the number 

n of  terms taken into account. 

3.2 Solution o f  the integral equation 

Now we will try to solve the integral equation 

J(x, 7r/4)= J(x,  7r/4) (3.7) 

by reduction to a system of  linear equations. At first, we approximate the integral J(x, 7r/4), 

by using the Gauss, Radau or Lobatto method of  numerical integration with n abscissae, by 

J(x, 7r/4) ~ k~=l AkK (tk, X)~(tk ) --2{r(x) + r ( - x )  } (3.8) 
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with r(x)  and r ( - x )  given by Eqs. (3.6) and ~O(tk) being the n values of  the 'unknown'  function 

¢(t)  at the abscissae t k. To avoid insertion of  the additional unknows ~0(x) and ~0(-x) through 

r(x)  and r ( - x )  respectively, the following procedure should be followed: 

i) equation (3.7) must be applied at the roots x r of  qn(X), so that r(Xr) = 0, and 

ii) term r ( - x )  must be ommitted. 

Now it has been found numerically that the number of  roots x r of  qn(X) is (n + 1), n and 

(n - 1) for the Gauss, Radau and Lobatto methods respectively. For each method these roots 

x r alternate with the abscissae t k used. It should also be observed that, although the numerical 

evaluation of  the roots x r for n = 1(1)16 is adequate for the needs of  the present research, that 

is the necessary points of  application of  the integral equation have been made available, still a 

theoretical investigation of  the exact number of  the roots x r for any value of  n would be 

interesting. 

In addition, it has been found that, for all values of  n = 1 (1)16, the smallest root x l in either 

the Gauss method or the Radau method with t n = 1 lies very close to 0, so that the whole solu- 

tion is significantly influenced by the pole t = - x l  in the numerical example considered here. 

To overcome the difficulty posed by the fact that the corresponding correction term r ( - x )  

must be omitted, as has been explained previously, the following steps should be-taken: 

i) In the case of  the Gauss method, the smallest root x l of  qn(PC) is not used as a collocation 

point. 

ii) In the case of  the Radau method with t n = 1, the first root x l  is also omitted and the 

largest root x n + 1 of  the Gauss method is chosen as the n-th collocation point. 

iii) Also in the case of  the Lobatto method, the largest root x n + 1 of  the Gauss method is used 

as the n-th collocation point. 

TABLE 2 

Numerical results for the values ~o (tk) of  the unknown function ~o (t), obtained from the solution of  Eq. (3. 7) 
by using the Gauss, Radau and Lobatto methods with n = 16 abscissae. 

Gauss method Radau method Radau method Lobatto method 
(t~ =0) (tn= 1) (t 1 =0 and tn= 1) 

1.000120 0.932184 1.000753 0.931770 
0.999485 1.012699 0.998791 1.012186 
0.999914 1.001343 0.998990 1.000536 
0.999969 1.000383 0.998764 0.999298 
0.999985 1.000169 0.998405 0.998734 
0.999990 1.000096 0.997878 0.998173 
0.999993 1.000065 0.997074 0.997411 
0.999994 1.000050 0.995788 0.996229 
0.999995 1.000043 0.993625 0.994260 
0.999995 1.000041 0.989777 0.990755 
0.999995 1.000041 0.982417 0.984035 
0.999994 1.000045 0.966847 0.969781 
0.999993 1.000052 0.928529 0.934621 
0.999992 1.000065 0.807407 0.823289 
0.999989 1.000092 0.178774 0.244815 
0.999980 1.000161 -31.157624 -28.612200 
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Numerical results, for the values of the unknown function ~0(t) at the abscissae t k used, are 
given in Table 2 for all four methods used with n -- 16 abscissae. These results, compared with 
the exact value of the unknown function ~o(t) = 1, appear to be satisfactory. 

4. An application 

In this section we will apply the results of the previous sections to a plane elasticity problem, 
namely the problem of a simple straight crack in an infinite isotropic elastic medium in the 
case when the loading along the crack edges presents a jump. In general, logarithmic singulari- 
ties are often encountered in plane or antiplane elasticity problems and the most common case 
when they appear is the case when jumps in loading along the boundary of a medium are 
present. This becomes clear from the complex-variable formulation of plane elasticity problems 
contained in the well-known book of Muskhelishvili [ 15 ]. An analogous formulation is valid for 
antiplane elasticity problems. In practice, the experimental method of caustics has been used 
[16] in plane elasticity problems near points of the boundary of the medium where jumps in 
loading were present and, hence, the complex potential ~(z) [15] presented logarithmic 
singularities. 

In this section we will consider just a simple example of the application of the results of this 

paper in plane elasticity. Thus we consider the Cauchy-type singular integral equation 

1 f ]  ~o(t) dt = f(x), - 1  < x  < 1, (4.1) 
zr l t - x  

accompanied by the condition 

fl_ ~o(t)dt = O. (4.2) 
1 

These equations arise in the problem of a simple straight crack of length equal to 2 inside an 

infinite isotropic elastic medium [17]. In Eq. (4.1) f(x) is the loading distribution along the 

crack edges (assumed the same on both edges) and ¢(x) an unknown density function, which 
may be interpreted as an edge-dislocation density along the crack. As regards Eq. (4.2), it 
assures the single-valuedness of displacements around the crack. 

In the case when f(x) is a continuous function along the crack [-1,1 ], the results of[17] are 

directly applicable to the solution of Eqs. (4.1-4.2). In our case we will assume that f(x)  is dis- 
continuous at some point along the crack. Loading discontinuities often arise in practical appli- 
cations. For example, in the special problem under consideration, discontinuities in f(x) be- 
come automatically present if we consider the well-known Dugdale-Barenblatt model [ 18 ]. Here, 
for simplicity, we will assume that the loading-distribution functionf(x) presents a jump atx = 0. 

For the sake of simplicity we assume that 

f(x) = sign x. (4.3) 

More complicated cases can also be treated in a completely analogous way. 
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By taking into account Eqs. (4.1) and (4.3), we can easily remark that the unknown func- 
tion ~0(t) in Eq. (4.1) is an even function. Moreover, because of the expected logarithmic 

singularity of~0(t) at t = 0, we replace it by the function: 

g(t) =~o(t)/w(t), w( t )  = ln(1/It I). (4.4) 

Now Eqs. (4.1-4.2) can be written as: 

2x f :  in 1 1 T t g(t)  t ~ - x : d t = f ( x ) '  0 < x < l ,  (4.5) 

f :  In 1 g( t )d t  = O. (4.6) 

Equation (4.5) was solved by using the method of this paper. The Radau rule with an abscissa 

at t = 0 was preferred since it permits the direct evaluation of the intensity of the logarithmic 

singularity of¢( t )  at t = 0, that is the value of g(0). The number n of  abscissae used was n = 4(4) 16. 

The collocation points used were (n - 1) in number. The collocation point near the point x = 1 

was not used; condition (4.6) was used as the nth equation of the system of linear equations 

after the Radau numerical integration rule was applied to this condition too. 

TABLE 3 

Convergence of  the numerical results for the intensity of  the logarithmic singularity at t = 0 in the crack 
problem of  Section 4 to the expected value. 

Theoretical 
n 4 8 12 16 value 

g(0) -0.582 -0.602 -0.607 -0.610 -2#r = -0.6366 

In Table 3 we give the values of g(0) obtained for n -- 4(4)16. We see from this table that the 

numerically obtained results for g(0) converge to the expected value which is equal to -2/7r. 

This fact can easily be established if we take into account that the solution of Eq. (4.1) is of the 

form: 

1 f l  ( 1 -  t2 ) l /2 f ( t )  dr+ C 
~o(x)- n(1 --X2) 112 --1 t - - x  (1 - x 2 ) 1 / 2  ' (4.7) 

where C is a constant to be determined from Eq. (4.2). Of course, a closed-form evaluation of 
the integral in Eq. (4.7) is not always a simple matter. Yet, in the example of this section, 

where f ( x )  is determined from Eq. (4.3), this is possible. Thus, by taking into account that 

f :  (1 - t2 ) l /2d( t  2) t~ - -x -  ~ = - 2  + 2(1 - -  x 2 ) l / 2 t a n h - l ( l  -x2) 1/2, (4.8) 

we can conclude that 
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~0(x) = - 2 tanh_ 1 (1 - x 2 )  1/2 +D(1  --X2) -112, 
lr (4.9) 

where D is a constant, and, further, that 

g ( 0 ) = - 2 / n ,  (4.10) 

Eq. (4.4) also being taken into account. 

Finally, we can mention the generalization of these results to more complicated cases. In a 
general plane elasticity problem, we have usually to split its boundary into parts and use appro- 
priate numerical integration rules in each one of them. For example, we have to use numerical 
integration rules associated with a logarithmic weight function about points where logarithmic 
singularities are present (e.g. points of jump in loading), numerical integration rules associated 
with a weight function presenting a power singularity of order ( -1 /2)  near crack tips, etc. 
Particularly, in the present example we could have split the integration interval into two parts 
[0, 1/2] and [1/2, 1] and used a weight function with a logarithmic singularity at t = 0 (as 

really made) in the first subinterval and a weight function with ( -1 /2)  power singularity (at 
t = 1) in the second subinterval. That was not made here since we focussed our attention on the 

point t = 0, where the logarithmic singularity was present, not at the crack tips. Of course, more 
rapid convergence of the numerical results of Table 3 to their theoretical value would be ex- 
pected if the inverse-square-root power singularity at the crack tips (t = + 1) were taken into 
account. Inversely, we could have ignored the logarithmic singularity at t = 0 and used the 

weight function 

w(t) =(1 - t2 ) -1/2 (4.11) 

along the whole crack [-1,1 ] or simply [0,1]. Then the values of the stress-intensity factor at 

the crack tips would easily result, but not the intensity of the logarithmic singularity at t = 0, 

contrary to what was made previously. 

5. Conclusions 

Until now the attempts made in the area of numerical evaluation of Cauchy-type integrals with 
a logarithmic weight function concern only the evaluation of such integrals either for any func- 
tion, with moderate accuracy (e.g. Kuli6 [6]), or for some specific functions (e.g. Kadlec [4]). 
In this paper a method of numerical integration, recently developed and treating poles inside 
the integration interval in the same manner as those lying outside it, is adopted to treat logarith- 
mic singularities in the density function of the Cauchy-type integral. The method permits both 
the evaluation of such integrals with excellent accuracy and the solution of integral equations 
of the same kind with very good accuracy. The results of this paper are of particular significance 
in plane and antiplane elasticity problems, where Cauchy-type integrals and integral equations 
with logarithmic singularities are frequently encountered. 
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